
May 1999 The Delphi Magazine 15

Beating the System:
Fun With Bitmaps
ScanLine secrets revealed!
by Dave Jewell

Recently I had occasion to
review a certain popular

graphics toolkit. The core function-
ality of this product is imple-
mented as a set of DLLs, callable
from Visual Basic, Visual C++,
Delphi, C++ Builder or whatever
development environment takes
your fancy. For Delphi and
C++Builder, the vendors also
supply a set of VCL components
that effectively ‘wrapped’ the vari-
ous DLL calls, making it relatively
easy to perform sophisticated
bitmap manipulations via drop-in
components.

Although the underlying DLLs
were quite good, I wasn’t so
impressed with the quality of the
VCL controls and, while deliberat-
ing on a suitable subject for this
month’s article, it occurred to me
that it might be fun to see what sort
of bitmap manipulations could be
performed using Delphi itself. After
all, why bother with third-party
OCX files and DLLs if you can do
the job yourself from within a
single EXE file?

The Pixels Array: Just Say No!
In order to perform bitmap
manipulations, we need to find a
mechanism for getting at the indi-
vidual pixels themselves.

If you’ve ever delved around
inside the GRAPHICS.PAS source file
(and if you haven’t, you should!)
then you may well have discovered
the deeply weird Pixels property
of the TCanvasobject. Object Pascal
is quite a simple language when
compared to C++ but, as I’m fond of
saying, it offers a surprisingly rich
set of syntactic constructs. A good
example of this is the support for
array properties, of which the
Pixels array is an excellent
example. Here is the declaration of
this property:

property Pixels[X, Y: Integer]:
TColor read GetPixel
write SetPixel;

If you’ve never used array proper-
ties in your components then you
should try them out. In the case of
the Pixels property, it allows you
to access individual pixels of the
canvas just as if they were a two-
dimensional array. The compiler
converts read and write references
to the Pixels property into calls on
GetPixel and SetPixel, both of
which are private methods. Thus,
you can do something like this:

Canvas.Pixels[0,0] := clBlack;

In terms of generated code, this
will get transmogrified into a call
on the SetPixel method, with the X
and Y co-ordinates as the first two
parameters and clBlack as the
third. This approach is elegant and
reasonably efficient... until it hits
Windows! Internally, the GetPixel
and SetPixel routines map straight
down onto the Windows API rou-
tines of the same name and ulti-
mately end up calling code within
the installed video device driver.
The bottom line is that these two
routines (and therefore the Pixels
property itself) are very expensive
in terms of execution time.
Typically, even the simplest
bitmap manipulation requires that
the code read and write every
single pixel in the image, and you
can therefore see that the Pixels
property represents a horren-
dously slow way of getting the job
done. Is there a better way? Indeed
there is...

Enter The ScanLine Property
A far superior solution is to make
use of the ScanLine property. The
Pixels array is a property of the

TCanvas class, but ScanLine is a
property of TBitmap. ScanLine is
implemented as a one-dimensional
array property, accessed by row
or Y co-ordinate. For each row of
pixels in the bitmap, ScanLine will
give you a direct pointer to the raw
bitmap data. This means that we
can manipulate the bitmap data a
row at a time, and we only ever
have to call the VCL library when
we want the next row of data. Even
then, the underlying GetScanLine
method is very efficient and
essentially does little more than
recalculate an offset into the
bitmap data for a given row.

That said, there is one potential
problem: the actual format of pixel
data returned by ScanLinewill vary
depending on the format of the
bitmap itself. If you look at the help
documentation for TBitmap, you’ll
notice that there’s another prop-
erty called PixelFormat. Using this
property, it’s possible to specify
the format that you want to work
with. Subject to certain restric-
tions, you can load a bitmap into a
TBitmap object and then set the
PixelFormat to massage the image
data into the format that you want
to work with. The Borland docu-
mentation doesn’t go into a great
deal of detail about what the differ-
ent pixel formats are, so I’ve briefly
described them for you in Table 1,
over the page.

For the sake of simplicity, all the
bitmap-twiddling code developed
here is based around the pf32bit
format. These days, it’s reasonable
to assume that any 32-bit Delphi
developer will be equipped with a
system capable of displaying
24-bit colour, and any new image
processing code should certainly
be written to that standard. More-
over, the pf32bit pixel format
offers the highest possible level of
performance, and that’s what
we’re after! In passing, it’s worth
noting that pretty much the only
advantage of the aforementioned
Pixels property array is its ability
to manipulate any bitmap in a
format-independent manner: all
the dirty work of figuring out and
accessing the underlying pixel
format is left to the GDI and device
driver code. As with Visual Basic,

16 The Delphi Magazine Issue 45

simplicity is not always synony-
mous with performance.

Brightening
Up Your Bitmaps!
Armed with the new ScanLine prop-
erty, let’s see how easy it is to
manipulate a bitmap. The code in
Listing 1 implements a new
TGraphic descendant of TBitmap
called TExBitmap. It performs essen-
tially the same job as TBitmap, but
with a number of extra bells and
whistles.

To begin with, you’ll see that I’ve
defined a new scalar type called
TExBrightness in the range -255
through to +255. This type is used
to specify the brightness of a
bitmap. The reason that it varies
from -255 to +255 is simple: as I’ve
already indicated, we’re basing
this code around the pf32bit pixel
format which means that the
colour value of any pixel can vary
between 0 and 255. For example, if
the red, green and blue compo-
nents of a particular pixel are all
zero, then of course it’s a black
pixel. In order to crank the bright-
ness of this black pixel all the way
up from black to brilliant white, we
need to be able to add up to 255 to
each colour value. Similarly, if
we’re starting with a white pixel,
and we want to fade it down to
black, then we may need to sub-
tract as much as 255 from each
colour channel. Therefore, by
defining a data type in the range
-255 to +255, we can add this
number to the colour value of each
pixel in a bitmap and thereby alter
its brightness.

However, I’m jumping ahead of
myself. Back in Listing 1, you’ll see
a set of type declarations just after
the implementation part of the unit.
These types deliberately override
(and therefore hide) the type dec-
larations of the same name that are
defined in the standard Delphi
GRAPHICS.PAS and WINDOWS.PAS
files. Ordinarily, this would be a
rather risqué thing to do, but since
it’s inside a unit’s private implemen-
tation, it isn’t going to screw up
anyone else. There are two reasons
why I’ve done this. Firstly, the
Microsoft/Borland supplied ver-
sion of TRGBQuad defines the three

colour value fields as rgbBlue,
rgbGreen and rgbRed. Being termi-
nally lazy, and knowing that these
fields are going to be repeatedly
referenced within the bitmap
manipulation code, I chose to
replace them with the more
snappily-named r, g, b fields.

As an aside, if you ever discover
an erroneous declaration in a
Borland or third-party unit, this is a
good technique for fixing the decla-
ration without having to alter
someone else’s code. And if you
want to access the original declara-
tion after overriding it, you can still
do so by qualifying the type name
with the name of the containing
unit, for example Windows.TRGBQuad.
Isn’t Delphi Pascal wonderful?

Now here’s another, more seri-
ous reason why I chose to redefine
the TRGBQuadArray type. As you can
see from the original declaration of
this routine inside GRAPHICS.PAS,
this type is intended to corre-
spond to the pixel data that’s
returned from a call to ScanLine
when the PixelFormat is set to
pf32bit. Unfortunately, whoever
wrote this type definition appar-
ently figured that no bitmap would
ever be wider than 256 pixels, and
the Byte type was therefore used to
specify the range of the array. I’ve
simply replaced this with a Word, as
shown below, to prevent any
objections from the compiler

Format Explanation

pfDevice This pixel data format is only used for device-dependent data.

pf1bit One bit per pixel format. For obvious reasons, this format is
only relevant to black and white images, or image masks.
The pixel data is simply stored as consecutive bits, with eight
pixels of information per byte.

pf4bit As the name suggests, this format corresponds to 4 bits per
pixel. Since 24=16, this gives a maximum of 16 possible colours.
Each byte of the ScanLine data stores two pixels of
information. Furthermore, this data format uses palettes,
the pixel values (0..15) are simply indexes into the palette
information where the real colours are stored.

pf8bit This is a variation on the above. This time, 256 colours are
possible because a full byte is used to store each pixel.
As before, the pixel values index into a palette.

pf15bit A rather odd data format in which each pixel occupies a
16-bit word. The most significant bit of the word is zero.
This is followed by five bits of red colour information, 5 bits
of green, and 5 of blue. In other words, the intensities of the
three primary colours can each take one of 32 discrete values.
A total of 32,768 different colours can be displayed using this
data format, which isn’t palette based.

pf16bit Similar to the previous format, but six bits are allocated to the
green component, meaning that the most significant bit of the
word is now used, the red component having to ‘shuffle up’ by
one bit. The theory here is that the human eye has increased
sensitivity to green, so it makes sense to allow twice as many
levels of green as for red and blue. 65,536 different colours can
be represented.

pf24bit Now we get to the serious stuff! With this data format, each
pixel is represented by three consecutive bytes (red, green,
blue order) which specify up to 256 different values for each
colour. 224 = 16,777,216, meaning that over 16 million different
colours are possible in 24-bit mode, greater than the human
eye’s ability to distinguish.

pf32bit This pixel format is indistinguishable from the preceding
format, except that a full 32-bits are required to store each
pixel. As before, one byte is allocated for each of the three
colours, with an additional, spare byte also allocated.

➤ Table 1

18 The Delphi Magazine Issue 45

unit EXBitmap;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Dialogs;

type
TExBrightness = -255..255;
TExBitmap = class (TBitmap)
private
fChangeLock: Boolean; // True if we're altering image
fOriginal: TBitmap; // original bitmap image
fBrightness: TExBrightness; // current brightness level
fFlipped: Boolean; // if image is vertically flipped
fMirrored: Boolean; // if image horizontally mirrored
fInverted: Boolean; // if image inverted (negative)
fBlurRadius: Double; // radius for Gaussian blur
fWeights: array [-100..100] of single;
fSize: 1..100;
procedure SetBrightness (Value: TExBrightness);
procedure SetMirrored (Value: Boolean);
procedure SetInverted (Value: Boolean);
procedure SetFlipped (Value: Boolean);
procedure SetBlurRadius (Value: Double);
procedure InitGaussianWeightings;
procedure BlurRow (S, D: Pointer; Count: Integer);

protected
procedure Changed (Sender: TObject); override;

public
constructor Create; override;
destructor Destroy; override;
procedure GaussianBlur;
property Flipped: Boolean read fFlipped
write SetFlipped default False;

property Mirrored: Boolean read fMirrored
write SetMirrored default False;

property Brightness: TExBrightness read fBrightness
write SetBrightness default 0;

property Inverted: Boolean read fInverted
write SetInverted default False;

property BlurRadius: Double read fBlurRadius
write SetBlurRadius;

end;
implementation
type
// Override the definitions in Windows.pas
PRGBQuad = ^TRGBQuad;
TRGBQuad = packed record
r: Byte;
g: Byte;
b: Byte;
rgbReserved: Byte;

end;
// Override the definitions in Graphics.pas
TRGBQuadArray = array [Word] of TRGBQuad;
PRGBQuadArray = ^TRGBQuadArray;

constructor TExBitmap.Create;
begin
Inherited Create;
fBlurRadius := 3.0;
fOriginal := TBitmap.Create;

end;
destructor TExBitmap.Destroy;
begin
fOriginal.Free;
Inherited Destroy;

end;
procedure TExBitmap.Changed (Sender: TObject);
begin
Inherited Changed (Sender);
if not fChangeLock then begin
PixelFormat := pf32Bit;
fBrightness := 0;
fFlipped := False;
fMirrored := False;
fInverted := False;
// Force a *COPY* of the bitmap. >>DON’T<< call Assign!
fOriginal.Width := Width; fOriginal.Height := Height;
fOriginal.Canvas.Draw (0, 0, Self);
fOriginal.PixelFormat := pf32Bit;

end;
end;
procedure TExBitmap.SetBrightness (Value: TExBrightness);
var
Row, Col: Integer;
Line: PRGBQuadArray;

begin
if (not Empty) and (fBrightness <> Value) then begin
fBrightness := Value;
fChangeLock := True;
// Get an unadulterated copy of the image
Canvas.Draw (0, 0, fOriginal);
Assert (PixelFormat = pf32Bit);
for Row := 0 to Height - 1 do begin
Line := ScanLine [Row];
for Col := 0 to Width - 1 do
with Line [Col] do
if Value > 0 then begin
if r + Value > 255 then r := 255
else Inc(r, Value);

if g + Value > 255 then g := 255
else Inc(g, Value);

if b + Value > 255 then b := 255
else Inc(b, Value);

end else begin
if r + Value < 0 then r := 0
else Inc(r, Value);

if g + Value < 0 then g := 0
else Inc(g, Value);

if b + Value < 0 then b := 0
else Inc(b, Value);

end;
end;
fChangeLock := False;
Inherited Changed (Self);

end;
end;
procedure TExBitmap.SetFlipped (Value: Boolean);
procedure FlipBitmap (bmp: TBitmap);
var
TempScanLine: Pointer;
ScanLineBytes, Row, H: Integer;

begin
with bmp do begin
Assert (PixelFormat = pf32Bit);
H := Height;
ScanLineBytes := Width * sizeof (TRGBQuad);
GetMem (TempScanLine, ScanLineBytes);
for Row := 0 to ((H and (-2)) - 1) div 2 do begin
Move (ScanLine [Row]^, TempScanLine^,
ScanLineBytes);

Move (ScanLine [H - Row - 1]^, ScanLine [Row]^,
ScanLineBytes);

Move (TempScanLine^, ScanLine [H - Row - 1]^,
ScanLineBytes);

end;
end;
FreeMem (TempScanLine);

end;
begin
if (not Empty) and (Value <> fFlipped) then begin
fFlipped := Value;
FlipBitmap (Self);
// Lossless operation - so apply to original also.
FlipBitmap (fOriginal);
Inherited Changed (Self);

end;
end;
procedure TExBitmap.SetMirrored (Value: Boolean);
procedure MirrorBitmap (bmp: TBitmap);
var
Temp: TRGBQuad;
Row, Col, W: Integer;
Line: PRGBQuadArray;

begin
with bmp do begin
Assert (PixelFormat = pf32Bit);
W := Width;
for Row := 0 to Height - 1 do begin
Line := ScanLine [Row];
for Col := 0 to ((W and (-2)) - 1) div 2 do begin
Temp := Line [Col];
Line [Col] := Line [W - Col - 1];
Line [W - Col - 1] := Temp;

end;
end;

end;
end;

begin
if (not Empty) and (Value <> fMirrored) then begin
fMirrored := Value;
MirrorBitmap (Self);
// Lossless operation - so apply to original also.
MirrorBitmap (fOriginal);
Inherited Changed (Self);

end;
end;
procedure TExBitmap.SetInverted (Value: Boolean);
procedure InvertBitmap (bmp: TBitmap);
var
Row, Col: Integer;
Line: PRGBQuadArray;

begin
with bmp do begin
Assert (PixelFormat = pf32Bit);
for Row := 0 to Height - 1 do begin
Line := ScanLine [Row];
for Col := 0 to Width - 1 do
with Line [Col] do begin
r := not r;
g := not g;
b := not b;

end;
end;

end;
end;

begin
if (not Empty) and (Value <> fInverted) then begin
fInverted := Value;
InvertBitmap (Self);
// Lossless operation - so apply to original also.
InvertBitmap (fOriginal);
Inherited Changed (Self);

May 1999 The Delphi Magazine 19

end;
end;
procedure TExBitmap.InitGaussianWeightings;
const
delta: Double = 1.0 / 510; // Smaller entries are ignored
LastRadius: Double = 0.0;

var
Idx: Integer;
D: Double;
procedure Normalise (Lo, Hi: Integer);
var
Total: Double;
Idx: Integer;

begin
Total := 0;
for Idx := Lo to Hi do
Total := Total + fWeights[Idx];

for Idx := Lo to Hi do
fWeights [Idx] := fWeights[Idx] / Total;

end;
begin
// If same radius as requested last time, nothing to do...
if fBlurRadius = LastRadius then Exit;
LastRadius := fBlurRadius;
//Init weights array with standard deviation = fBlurRadius
for Idx := Low (fWeights) to High (fWeights) do begin
D := Idx / fBlurRadius;
fWeights [Idx] := exp (-D*D/2);

end;
// Normalise around maximum bounds
Normalise (Low (fWeights), High (fWeights));
// Discard entries smaller than Delta
fSize := High (fWeights); D := 0;
while (D < delta) and (fSize > 1) do begin
D := D + 2 * fWeights [fSize];
Dec (fSize);

end;
// Normalise again, using new bounds
Normalise (-fSize, fSize);

end;
procedure TExBitmap.BlurRow (S, D: Pointer; Count: Integer);
var
Idx, Pix, j, n: Integer;
rr, gg, bb, w: Double;
Src: PRGBQuadArray absolute S;
Dest: PRGBQuadArray absolute D;

begin
for j := 0 to Count - 1 do begin
rr := 0; gg := 0; bb := 0;
for n := -fSize to fSize do begin
w := fWeights [n]; Idx := j - n;
// Ensure index is pinned between 0..Count-1
if Idx < 0 then Idx := 0 else if Idx > Count - 1 then
Idx := Count - 1;

with Src [Idx] do begin
rr := rr + w * r;
gg := gg + w * g;
bb := bb + w * b;

end;
end;
with Dest [j] do begin
Pix := Trunc (rr);
if Pix < 0 then Pix := 0

else if Pix > 255 then Pix := 255;
r := Pix;
Pix := Trunc (gg);
if Pix < 0 then Pix := 0
else if Pix > 255 then Pix := 255;

g := Pix;
Pix := Trunc (bb);
if Pix < 0 then Pix := 0
else if Pix > 255 then Pix := 255;

b := Pix;
end;

end;
end;
procedure TExBitmap.SetBlurRadius (Value: Double);
begin
if Value > 0.0 then fBlurRadius := Value;

end;
procedure TExBitmap.GaussianBlur;
type
PPRows = ^TPRows;
TPRows = array[Word] of PRGBQuadArray;

Var
Rows: PPRows;
Column, Scratch: PRGBQuadArray;
ScanLineBytes, H, W, Row, Col: Integer;

begin
if not Empty then begin
fChangeLock := True;
// Get a copy of the original image
Canvas.Draw (0, 0, fOriginal);
Assert (PixelFormat = pf32Bit);
H := Height; W := Width;
ScanLineBytes := W * sizeof (TRGBQuad);
InitGaussianWeightings;
GetMem (Rows, H * sizeof (Pointer));
GetMem (Column, H * sizeof (TRGBQuad));
// Retrieve the address of each bitmap scanline
for Row := 0 to H - 1 do Rows [Row]:= Scanline [Row];
// Blur each row
GetMem (Scratch, ScanLineBytes);
for Row := 0 to H - 1 do begin
BlurRow (Rows [Row], Scratch, W);
Move (Scratch^, Rows [Row]^, W * sizeof (TRGBQuad));

end;
// Blur each column
ReallocMem (Scratch, H * sizeof (TRGBQuad));
for Col := 0 to W - 1 do begin
// first read the column into a TRow
for Row := 0 to H - 1 do Column [Row] := Rows
[Row][Col];

BlurRow (Column, Scratch, H);
// Replace the column in the destination bitmap
for Row := 0 to H - 1 do Rows [Row][Col] := Scratch
[Row];

end;
FreeMem (Rows);
FreeMem (Column);
FreeMem (Scratch);
fChangeLock := False;
Inherited Changed (Self);

end;
end;
end.

and/or Delphi’s runtime range-
checking code.

TRGBQuadArray =
array[Word] of TRGBQuad;

Right then, let’s look at how one
would use the ScanLine facility to
vary the brightness of a bitmap. As
you can see from Listing 1,
TExBitmap exports a Brightness
property of type TExBrightness.
The ‘business end’ of this code is
the private SetBrightness method
that gets called whenever the prop-
erty is altered. Having checked
that the desired brightness level
differs from the current bright-
ness, the code first retrieves a copy
of the original bitmap (I’ll be
explaining this later; for now, just

concentrate on the way in which
pixels are manipulated through the
ScanLine property).

Because TExBitmap is derived
from TBitmap, we’ve got instant
access to our own properties such
as Width, Height and so on. Accord-
ingly, the code is organised with an
outer-level FOR loop that iterates
through all the available rows in
the bitmap, using Height to get the
bitmap size. For each row of
bitmap pixels, we use ScanLine to
retrieve a pointer, Line, to the pixel
data. In this case, you’ll notice that
Line is of type PRGBQuadArray, using
our new, improved type declara-
tion. A second FOR loop then iter-
ates through each horizontal pixel
in the current scan line, either
boosting or reducing the colour

values of each pixel, depending on
whether or not the Value parame-
ter is positive or negative. The
important thing here is to ensure
that each colour value is ‘pinned’
between 0 and 255, rather than
simply allowing 250+20 (for exam-
ple) to ‘overflow’ into a new colour
value of 14.

Although this code isn’t optimal,
it’s fast enough to allow us to
adjust the brightness of a large
bitmap in real-time, as you’ll see
when we come to look at the
test-bed application, later in this
article. If you really want to burn
rubber, you could resort to tricks
such as (for example) pre-
calculating 255-Value, and then

➤ Listing 1

20 The Delphi Magazine Issue 45

comparing colour values against
this when Value >= 0. If you insist
upon ultimate performance then
you’re very welcome to rewrite the
whole thing in assembler!

When Information Gets Lost...
Being able to increase or decrease
the brightness of a bitmap is great
fun, but there is a fundamental diffi-
culty here. Once a colour value has
been increased to 255 or 0, any fur-
ther increase or decrease (respec-
tively) in the brightness of the
bitmap will lose information from
the image. To put this another way,
suppose you’ve got a pixel which
has a red value of 255, a green value
of 255 and a blue value of zero. In
other words, the pixel is solid
yellow. As you increase the bright-
ness of the bitmap on which this
pixel resides, the blue colour value
will climb steadily towards 255, but
the red and green values will stay
where they are, having already
reached maximum. Thus, informa-
tion has been lost: the relative
difference between the colour
values within the pixel has been
destroyed. To put it simply, the
pixel will forget its yellowness.
Once you reach pure white (all
values equal to 255) reducing the
brightness of the image will simply
give you successive shades of grey.

What it really boils down to is
this: altering the brightness of a
bitmap is a non-reversible opera-
tion. The chances are that, even
when you only reduce the bright-
ness slightly, some pixel colour
values will hit zero, while a slight
increase in brightness will ‘pin’
other colour values to 255. This
raises serious problems if we want
to (for example) create an image
processing application that dis-
plays a trackbar, allowing the
end-user to select the degree of
brightness for an image. How do
we allow arbitrary changes in
brightness, while retaining all the
information that the bitmap
contains?

The answer, of course, is to
create a backup copy of the
bitmap. That’s the purpose of the
private fOriginal bitmap con-
tained within the TExBitmap class.
As you can see from the code, this

bitmap is automati-
cally constructed
when the TExBitmap
constructor is called, and
destroyed when an instance of
TExBitmap is freed. More impor-
tantly, the TExBitmap class over-
rides the Changed event handler,
ensuring that TExBitmap.Changed
gets called every time that the
image is modified. Thus, whenever
a new bitmap is loaded into the
object (as, for example, through a
call to LoadFromFile) this code
ensures that a copy of the original
image is immediately made, and
salted away in the fOriginal
bitmap.

It would be tempting here to
simply use Assign to copy the ini-
tial bitmap image into fOriginal.
However, if you’ve done much
work with TBitmap, you’ll appreci-
ate that this won’t work. In the case
of the TBitmap class, Assign is
essentially a ‘shallow copy’ (to use
the conventional OOP terminol-
ogy) which will leave fOriginal
pointing at the same API-level
bitmap image as the enclosing
TExBitmap object. To put it another
way, TBitmap has been specifically
written so that multiple objects of
this class can all refer to the same
bitmap, using reference counting
to manage destruction of the
underlying bitmap data. In an ordi-
nary application, this behaviour is
a major benefit (especially when
working with large bitmaps) but
here, it’s essential that any alter-
ations to the TExBitmap image don’t
affect our original copy. Similarly,
we can’t just copy the Handle prop-
erty of the TExBitmap class to the
Handle of fOriginal, it would have

the same effect as Assign. Instead, I
specifically set the size of
fOriginal to agree with the new
bitmap and then draw the image
onto the canvas of the bitmap
cache, effectively forcing the
creation of a completely new,
independent bitmap.

You’ll also notice that, at the
same time, the various properties
of TExBitmap are reassigned their
default values and that the
PixelFormat property of both
bitmap images is set to pf32Bit.
OK, so far so good, but what’s the
purpose of this mysterious
fChangeLock variable, I hear you
cry? We need this change lock
because, without it, we might inad-
vertently make some change to the
bitmap that would invoke the
Changed method, thereby overwrit-
ing our original bitmap. By setting
and clearing this flag within
bitmap manipulation routines, we
ensure that this can’t happen. If
you carefully examine the code
inside GRAPHICS.PAS, you’ll see
that TBitmap.Changed can be called
in a variety of circumstances.

It’s Flippin’ Marvellous...!
At this point, we’ve got a nice
re-usable class for brightening or
darkening a bitmap. But there’s
lots more that can be done. Back in
Listing 1, you’ll see that the
TExBitmap class also has a Flipped
property. If you set this to True,
the bitmap image will automati-
cally be flipped vertically. This
works by calling a private method
called SetFlipped. Within

➤ Figure 1: I can't
promise to give
you all the
functionality of
PhotoShop or
Paint Shop Pro
(I wish!) but you
will be surprised
how easy it is to
implement
powerful graphics
routines in Object
Pascal.

22 The Delphi Magazine Issue 45

SetFlipped, the code checks to see
if the bitmap is empty and, if not,
calls the nested FlipBitmap routine
once for the bitmap belonging to
the TExBitmap instance, and once
for the internal fOriginal image.

So what’s the rationale here?
Well, the most important point to
bear in mind is that flipping a
bitmap is a lossless operation.
Unlike the earlier discussion on
changing the brightness of an
image, flipping a bitmap will never
reduce the information content.
Consequently, it’s quite accept-
able to flip the original image as
well as the ‘main image’ (for want
of a better word). What we can’t do
is flip the image once, and then
copy the flipped image into the
original. If we did that, any bright-
ness changes made in the main
image would be copied into the
original image, making it impossi-
ble to subsequently restore the
original brightness levels. You’ll
also notice that this routine does
not bother to set the fChangeLock
variable because none of its code
triggers a call to Changed.

The real meat of the routine is, of
course, the FlipBitmap call.
Internally, this allocates a tempo-
rary memory buffer large enough
to store one scanline of pixel infor-
mation and it then iterates through
the bitmap, using the temporary
buffer to swap successive
scanlines in the image. I’ve used
the Move library routine in order to
make things go as fast as possible.
If you find yourself scratching your
head over that interesting-looking
FOR loop, here’s an explanation of
what’s happening: if you think of
the image as being made up of an
even number of scanlines (say, six,
for the sake of argument) then we

obviously want to swap scanlines
0 and 5, scanlines 1 and 4, and
scanlines 2 and 3. But what if there
were seven scanlines in the image?
In this case, we’d want to swap the
outermost six scanlines but leave
scanline four alone. The bottom
line is that the scanline swapping
code needs to deliberately ignore
the centre scanline of any bitmap
that’s an odd number of pixels in
height. By ANDing the height with
$FFFFFFFE (-2, in other words)
that’s the effect we achieve.

In a similar vein, another easy
transformation we can apply is
mirroring. This is the same as flip-
ping, except that we’re reversing
the bitmap horizontally, rather
than vertically. To accomplish
this, I added another property,
Mirrored, to the TExBitmap class. As
before, the real work is done inside
a private method called
SetMirrored. Again, this is a
lossless operation and so the inter-
nal logic of the code is identical to
that used by the SetFlipped
routine, calling the internal
MirrorBitmap routine on both the
original and the main images.
You’ll notice that, this time I’m
simply taking each scanline at a
time, and swapping pixels using a
temporary pixel variable of type
TRGBQuad. As with the vertical flip-
ping code, you’ll see that the inner-
most FOR loop takes care to ignore
the centre pixel in scanlines which
are an odd number of pixels wide:
there’s no point wasting time
swapping a pixel with itself!

As far as easy-peasy transforma-
tions are concerned, the simplest

possible must surely be the pro-
cess of inverting an image. Once
again, this is handled by a Boolean
property, Inverted, and a corre-
sponding ‘action procedure’
called SetInverted. This is also a
lossless transformation which is
applied to both the main image
and the original. You’ll notice that
we simply negate each of the three
colour values within each pixel
and that’s it, job done. If you’re an
assembler aficionado in search of
ultimate performance, you can
probably do the whole thing using
a main loop no more complex than
that shown in Listing 2.

This assembler language frag-
ment is a good demonstration of
why the pf32Bit pixel format offers
the highest possible level of per-
formance. Stepping through and
modifying three bytes at a time
would be messier and slower.
You’ll also notice that in this case,
the code happily tramples all over
the rgbReserved byte in each
TRGBQuad entry. This might cause
you to raise an eyebrow, but it will
have no ill effects whatsoever.

Gaussian Smoothing:
Delphi Meets PhotoShop!
Well, maybe not quite. I wouldn’t
dare suggest that you can use the
routines presented here as a
replacement for all the wonderful
effects available in PhotoShop, but
I hope that this article will per-
suade you how easy it is to per-
form image processing using
Delphi.

It’s a fact of life that some people
buy packages like PhotoShop
simply to create the sort of ‘drop
shadow’ effect that you can see in
Figure 2. In order to make a con-
vincing drop shadow like the one
shown here, it’s necessary to ‘blur’
the image to some extent. In real
life, when viewing an object in
ambient light (as opposed to
strong sunlight) the shadow will
generally have a soft focus effect,
and this is most easily achieved by

$1: xor dword ptr [ebx], 0FFFFFFFFh ; invert pixel
add ebx,4 ; step to next pixel
loop $1 ; loop until done

➤ Listing 2

➤ Figure 2: Drop shadows can be drop dead gorgeous! But in order to
implement them, you need to be able to programmatically blur an
image. Enter the deeply wonderful Gaussian smoothing algorithm…

May 1999 The Delphi Magazine 23

using an image processing function
known as a Gaussian blur.

You’re probably familiar with
the Gaussian distribution so
beloved of statisticians, and you
might wonder exactly what
Gaussian probability curves have
got to do with blurring a bitmap.
The answer is a lot. If you imagine
an aerosol can spraying paint
through a tiny pinhole onto a sheet
of paper, it should be obvious that
you’ll get a high density of paint
directly opposite the pin-hole, with
a gradual reduction in paint den-
sity as you get further away. This is
a Gaussian distribution. Now con-
sider how an image blurring func-
tion should work. Let’s pick a pixel
at random and consider what
colour that pixel should have once
the image has been blurred. Obvi-
ously, it will be most influenced by
those pixels closest to it, and least
influenced by those pixels far
away. In order to implement this,
we need to apply a ‘weighting’ to
each pixel, so that the ‘influence’ of
other pixels falls off smoothly, the

further we get from our target
pixel. This is where the Gaussian
distribution is most appropriate.
By creating a weighting array
which approximates a Gaussian
distribution, we can easily imple-
ment a convincing ‘blur’ function
in Delphi.

A particularly nice property of
the Gaussian blur algorithm is the
fact that it can be applied in a one-
dimensional manner. What this
means in real terms is that we can
blur all the rows in a bitmap, and
then blur all the columns. Why is
this important? It’s crucial because
if the convolution (a technical term
for the image processing function)
had to be applied in a two-
dimensional manner, then the pro-
cessing time would be propor-
tional to X multiplied by Y where X
and Y are the width and height of
the bitmap. However, since it can
be applied in a one-dimensional
manner, the processing time will
be proportional to X + Y which is
obviously going to give a drastic
improvement in performance.

Against this, there’s the overhead
of setting up the weighting array,
but this typically is an insignificant
overhead compared to the convo-
lution itself.

The code for applying a
Gaussian blur to a bitmap is
included in Listing 1. In fact, I used
this code to create the effect
shown in Figure 2. I have to confess
that the blurring code isn’t entirely
my own work: I found a public
domain implementation on the
internet and then extensively
reworked it for the purposes of
this article. If you want to see the
original code that my blur function
is based on, then visit:

www.delphidevelopers.com/
delphi/faq/uddf/pages/
graphics.htm#graphics9

I’ve considerably altered my ver-
sion of the code and, after some
judicious optimisation, I managed
to get a considerable performance
increase. The original implementa-
tion required 920 milliseconds to

24 The Delphi Magazine Issue 45

blur a particular test bitmap, but
my reworked implementation gets
this down to 400 milliseconds
[That’s quite enough bragging for
now, clever clogs. Ed].

I should warn you that, as with
all Gaussian blur implementations,
runtime will rise dramatically as
you increase the blur radius. Effec-
tively, you’re increasing the width
of the ‘aerosol spray’ and forcing
the algorithm to take far more
neighbouring pixels into account
when calculating the colour of any
one pixel. In this implementation,
the weightings are stored in an
array that’s two hundred entries in
size, imposing an absolute limit of
100 on the blur radius. However,
you will die of boredom long before
you get anywhere near this limit.
Moreover, it should be clear that
convoluting an image with a very
large blur radius will simply create
an indistinguishable ‘smudge’, so
there’s not much point in doing it
anyway. Think of blur radius as
being synonymous with short-
sightedness and you’ll get the idea!
The code here uses a default blur
radius of 3.0.

The heart of the implementation
is the InitGaussianWeightings rou-
tine which builds a Gaussian distri-
bution, with standard deviation
equal to the currently specified
blurRadius. As you’ll see, the code
simply does nothing if we’re using
the same blur radius as we did last
time, but this optimisation saves
us very little time. The weightings
array is then normalised so that all
the weightings add up to one (the
paint has got to land on the paper,
at some point!) and the lower and
upper bounds are clipped so as to
exclude entries that aren’t signifi-
cant before normalising again.
Once this is done the main routine,
GaussianBlur, retrieves the
addresses of all the scanlines in the
bitmap and saves them in the Rows
array. Again, this optimisation
saves a little time, but not a great
deal. Don’t be tempted to retrieve
the address of the first scanline
and then calculate the address of
the next by adding the size of a
scanline. If you do this, you’ll
quickly discover that some
bitmaps are stored with the first

scanline at
the highest
memory add-
ress, with sub-
sequent scan-
lines preced-
ing it.

The code
then walks
through each
row of the
bitmap calling
the BlurRow
routine and copying the newly
‘blurred’ scanline back into the
bitmap proper. It then resizes the
Scratch buffer so as to hold a
column of pixels rather than a row,
assembles each column in turn and
then calls the BlurRow routine to
effectively blur each column, copy-
ing it back into the bitmap as
before.

If you want to speed up this
code, your first priority should be
the BlurRow routine which is where
this Gaussian smoothing algorithm
spends most of its time. Here, the
various weightings are applied to
each pixel, taking care to pin the
index into the source scanline so
that we don’t accidentally step out-
side the bitmap. Again, think of the
aerosol analogy here.

Conclusions
Putting all of this together, this
month’s cover disk includes a
simple program that you can use to
try out the bitmap manipulation
functions covered here. The disk
also includes a compiled version of
the program (a mere 19Kb) which
was written in Delphi 3 using pack-
age support. You’ll need VCL30.DPL
in order to run the EXE file
included on the disk. The code has
also been tested under Delphi 4.
You can see the testbed program
running in Figure 3.

While you’re playing with this
code, you will notice one small
problem. If you alter the brightness
of an image after doing a blur, you’ll
see the image instantly ‘deblur’
and snap back into focus. This hap-
pens because (as with brightness
changes) blurring is a lossy opera-
tion, and I don’t therefore copy the
blurred bitmap into fOriginal.
When you next change the image

brightness, a fresh (non-blurred)
copy of the image is retrieved from
fOriginal cancelling the blur oper-
ation. As a quick fix to address this
problem, I suggest adding a Commit
procedure to the TExBitmap class,
which makes the last change per-
manent by copying the current
bitmap image into fOriginal, but
depending what you want to do
with the code presented here, you
may have your own ideas about
implementing undo facilities and
so forth.

As I said earlier, I hope this arti-
cle has convinced you that it’s
quite easy to do clever bitmap pro-
cessing tricks using Delphi without
having to resort to external DLLs
or OCX controls. As regular read-
ers will know, I’m a great believer
in doing the job in Object Pascal
where at all possible. That said, I’d
be the first to admit that the image
processing tricks shown here are
only a start, there are many more
effects that would be needed in a
real world program. So, over to
you! If you’ve got Delphi source
code for any other nice effect such
as sharpening, edge detection,
de-speckling, motion blur, etc,
then I’d love to hear from you.

Dave Jewell is a freelance consul-
tant, programmer and technical
journalist specialising in system-
level work. He is Technical Editor
of Developers Review which is
also published by iTec. Email Dave
at Dave@HexManiac.com

➤ Figure 3: Here's the simple
testbed app I wrote to
demonstrate the capabilities
of this month's code: full
source is on the disk as usual.

	The Pixels Array: Just Say No!
	Enter The ScanLine Property
	Brightening Up Your Bitmaps!
	When Information Gets Lost...
	It’s Flippin’ Marvellous...!
	Gaussian Smoothing: Delphi Meets PhotoShop!
	Conclusions

